Log in

Login to your account

Username *
Password *
Remember Me

Strong demand for rechargeable Li-ion batteries through 2022

The overall market for rechargeable Li-ion batteries is estimated to have reached $24 billion in 2017 and is projected to climb to $70 billion by 2022, with a combined annual growth rate of 24%.

   Lithium-ion (Li-ion) has become the dominant chemistry for consumer electronics devices and is poised to become commonplace for industrial, transportation, and power-storage applications, according to a recent report from iRAP. The overall market for rechargeable Li-ion batteries is estimated to have reached $24 billion in 2017 and is projected to climb to $70 billion by 2022, with a combined annual growth rate of 24%

  Demand for lithium-ion (Li-ion) rechargeable batteries has been driven by rapid growth in the use of electronic portable equipment. It is estimated that in 2017, 66% of the batteries used in consumer products such as mobile phones, digital cameras, laptops, tablet PCs, and power tools were lithium rechargeable batteries. Lithium is fast replacing nickel-metal hydride (Ni-Mh) and nickel-cadmium (Ni-Cd) batteries for powering consumer electronics.

Making lithium-ion batteries safer, stronger

Today’s rechargeable lithium-ion batteries are good, but they could be much better in the future.

 

Reza Shahbazian-Yassar, left, and Yifei Yuan

  That’s what University of Illinois at Chicago and Argonne National Laboratory researchers have concluded, following extensive studies using real-time transmission electron microscopy, or TEM. The technique, they report,is the most effective way to understand the electrochemical reactions of lithium-ion batteries and to learn how the batteries can be modified to become safer, stronger, longer lasting and cheaper.

 “Despite widespread use, rechargeable ion batteries face various materials and interfacial challenges that exclude them from high power and high-performance applications,” says Reza Shahbazian-Yassar, associate professor of mechanical and industrial engineering and one of the co-authors on the paper that includes Khalil Amine and Jun Lu of Argonne.

A fossil fuel technology that doesn’t pollute

L.S. Fan, Distinguished University Professor in Chemical and Biomolecular
Engineering at The Ohio State University, holds samples of materials
developed in his laboratory that enable clean energy technologies.
Photo by Jo McCulty, courtesy of The Ohio State University.

  Engineers at The Ohio State University are developing technologies that have the potential to economically convert fossil fuels and biomass into useful products including electricity without emitting carbon dioxide to the atmosphere. In the first of two apers published in the journal Energy & Environmental Science, the engineers report that they’ve devised a process that transforms shale gas into products such as methanol and gasoline—all while consuming carbon dioxide. Under certain conditions, the technology consumes all the carbon dioxide it produces plus additional carbon dioxide from an outside source.This process can also be applied to coal and biomass to produce useful products.

    “Renewables are the future,” said Liang-Shih Fan, Distinguished University Professor in Chemical and Biomolecular Engineering, who leads the effort. “We need a bridge that allows us to create clean energy until we get there—something affordable we can use for the next 30 years or more, while wind and solar power become the prevailing technologies.”

A new solution to utilize wind energy

Any resident of the Great Plains can attest to the massive scale of wind farms that increasingly dot the countryside. In the Midwest and elsewhere, wind energy accounts for an ever-bigger slice of U.S. energy production: In the past decade, $143 billion was invested into new wind projects, according to the American Wind Energy Association.

However, the boom in wind energy faces a hurdle — how to effectively and cheaply store energy generated by turbines when the wind is blowing, but energy requirements are low.

“We get a lot of wind at night, more than at daytime, but demand for electricity is lower at night, so, they’re dumping it or they lock up turbines —  we’re wasting electricity,” said Trung Van Nguyen, professor of petroleum & chemical engineering at the University of Kansas. “If we could store this excess at night and sell or deliver it during daytime at peak demand, this would allow wind farm owners to make more money and leverage their investment. At the same time, you deploy more wind energy and reduce demand for fossil fuels.”

Since 2010, Nguyen has headed research to develop an advanced hydrogen-bromine flow battery, an advanced industrial-scale battery design — it would be roughly the size of a semi-truck — that engineers have strived to develop since the 1960s. It could work just as well to store electricity from solar farms, to be discharged overnight when there’s no sun.

Impressive Solar Cell Efficiency Improvements across the Board

  The strong growth of the global solar market in 2017 to nearly 100 GW from 77 GW the year before had caught any expert in the sector by surprise. The recent efficiency increases were not all that surprising but the constant and manifold improvements have been very impressive across the board. The latest solar cell efficiency table (version 51 in Dec. 2017) of the semi-annually published Progress in Photovoltaics alone listed 10 new efficiency records for various cell and module technologies from companies and research institutes in Europe, Asia and America:

Tesla, Australia to turn 50,000 homes into power generators

 South Australia plans to partner again with Elon Musk's Tesla which has already built the world's largest battery in the state

Some 50,000 homes in South Australia will receive solar panels and Tesla batteries, the state government announced Sunday, in a landmark plan to turn houses into a giant, interconnected power plant.

South Australia is already home to world's biggest battery in an Elon Musk-driven project to provide electricity for more than 30,000 homes

Bio-inspired energy storage for solar power

  Inspired by an American fern, researchers have developed a groundbreaking prototype that could be the answer to the storage challenge still holding solar back as a total energy solution. The new type of electrode created by researchers could boost the capacity of existing integrable storage technologies by 3000 per cent.

  The breakthrough electrode prototype can be combined with a solar cell  for on-chip energy harvesting and storage. 

  But the graphene-based prototype also opens a new path to the development of flexible thin film all-in-one solar capture and storage, bringing us one step closer to self-powering smart phones, laptops, cars and buildings.

Can hydrogen fuel our future?

   It’s the first and lightest element in the Periodic Table and the most abundant chemical in the universe. An atom of hydrogen contains just one proton and one electron—and that could be all that’s needed to cleanly power our future.
  A team of scientists from CoorsTek Membrane Sciences (Golden, Colo.), the University of Oslo (Norway), and the Institute of Chemical Technology (Spain) has developed a promising new ceramic membrane that could reduce the cost and enhance the feasibility of hydrogen generation far enough to bring the technology to the forefront of clean energy solutions.
 The new ceramic membrane—made from oxides of barium, zirconium, and yttrium—can separate hydrogen from natural gas in a one-step process with incredibly high efficiency. Incorporated into a protonic ceramic fuel cell, the membrane can generate high-purity compressed hydrogen using just natural gas and electricity. The team recently published its results in Nature Energy.
 “By combining an endothermic chemical reaction with an electrically operated gas separation membrane, we can create energy conversions with near zero energy loss”, Jose Serra, co-author of the paper and professor at the Institute of Chemical Technology, says.
 The membrane consists of a dense film of a BaZrO3-based proton-conducting electrolyte on a porous nickel composite electrode, a combination that has high proton conductivity at 400ºC–900ºC—allowing it to separate primarily hydrogen protons out of methane, the primary component of natural gas, with incredibly high efficiency.

Lithium-ion cells allow to double the driving range

OSAKA -- Japan's GS Yuasa will begin mass producing as early as 2020 lithium-ion batteries that double the driving range of small electric vehicles. Lithium EnergyJapan, a joint venture with trading house Mitsubishi Corp.and carmaker Mitsubishi Motors, will develop the cells, which will be produced at its plant in Shiga Prefecture and supplied to automakers in Japan and Europe.
  Mitsubishi Motors'i-MiEV compact, for instance, has a scope of around 170km per charge. The new battery would extend the range to some 340km, comparable to that of a large electric vehicle which can hold a bigger battery, and close to the limit of a gasoline-fueled car with a full tank.
  The scarcity of charging facilities has been an obstacle to the popularization of electric cars, but longer-range batteries can help mitigate that concern. The plan is to hold down the price of the batteries to about the same level as existing products.

Neuer Rekord bei Silizium-Solarzellen

  Bis zum Jahr 2050 könnte Fotovoltaik ein Fünftel des weltweit benötigten Stroms liefern. Japanische Forscher vermelden nun einen Rekord für den Wirkungsgrad von Silizium-Solarzellen.
So effizient hat bislang keine Silizium-Solarzelle gearbeitet: Mit einem Wirkungsgrad von 26,3 Prozent nähert sich das in Japan entwickelte Panel der theoretischen Grenze für die Umwandlung von Sonnenlicht in elektrischen Strom. Dieses Limit wurde für Silizium-Solarzellen auf rund 29 Prozent berechnet. Der Wirkungsgrad ließ sich sogar noch steigern, wie das Team um Kunta Yoshikawa von der Kaneka Corporation in Osaka im Magazin "Nature Energy" schreibt. Gemessen wurde er vom Fraunhofer-Institut für Solare Energiesysteme in Freiburg.
"Die Verbesserung der Lichtumwandlung von Solarzellen ist entscheidend für den weiteren Einsatz von erneuerbarer Energie", schreiben die Wissenschaftler. Nach verschiedenen Prognosen könnte die Fotovoltaik im Jahr 2050 etwa 20 Prozent der weltweit benötigten Elektrizität liefern.
Vor allem japanische Forscher loten derzeit aus, wie weit man diese Technologie vorantreiben kann: Auch der bisherige Rekordhalter unter den Silizium-Solarzellen mit einem Wirkungsgrad von 25,6 Prozent kam 2014 aus dem fernöstlichen Land.
 Yoshikawa und Kollegen verwenden bei ihrem Herstellungsverfahren zunächst eine kristalline Silizium-Scheibe, die nur 165 Mikrometer (Tausendstel Millimeter) dick ist. Deren Oberfläche wird durch Ätzen strukturiert, um die Reflexion von Licht zu minimieren. Dann werden Vorder- und Rückseite mit sogenanntem amorphem Silizium beschichtet.
In dieser Form bilden die Atome des Halbmetalls eine unregelmäßige Struktur, während sie in kristallinem Silizium in ein strenges Kristallgitter eingebunden sind. Die Kombination aus kristallinem und amorphem Silizium verringert den Verlust an Ladungsträgern.

 
 


Solarmodulherstellung  in  China                                                                                                                  Foto:AP

 

Nový solární článek zachycuje velkou část světelné energie Slunce

   Vědci z univerzity George Washingtona představili první prototyp nového typu solárního článku, který dokáže získat energii z takřka celého světelného spektra Slunce a díky tomu se pyšní i neuvěřitelnou efektivitou 44,5 % (teoreticky lze dosáhnout maximálně 50 %).
   V rámci trojrozměrné konstrukce jsou solární buňky z tohoto materiálu umístěné ve vrstvách spolu s dalšími typy, kterou jsou běžné pro zachycení fotonů s krátkou vlnovou délkou. Díky vysoké přesnosti výroby pomocí transferového tisku bylo možné vyrobit výsledný solární článek. Jeho velikost je ale extrémně malá – pouze 1 mm2, což má ale svůj důvod: konstrukce totiž počítá s koncentrátorovou čočkou, která v tomto případě používá poměr koncentrace v podobě 744 Sluncí.
 

 

Page 1 of 2

Spolupracujeme

Jsme členy

Počet návštěvníků

0.png5.png6.png1.png5.png9.png4.png

Kalendář

24.04.2019 - 26.04.2019
20.REFRA Prague
Prague/CZ
22.05.2019 - 23.05.2019
20.Global FutureCem Conference on CO2 reduction
Brussels/BE
25.06.2019 - 29.06.2019
Gifa-Metec-Thermprocess-Newcast
Duesseldorf/DE
17.09.2019 - 18.09.2019
Glassman Europe 2019
Lyon/FR
13.10.2019 - 16.10.2019
16.Congress UNITECR 2019
Yokohama/JP